A stable and dual consistent boundary treatment using finite differences on summation-by-parts form

نویسندگان

  • Jens Berg
  • Jan Nordström
چکیده

This paper is concerned with computing very high order accurate linear functionals from a numerical solution of a time-dependent partial differential equation (PDE). Based on finite differences on summation-by-parts form, together with a weak implementation of the boundary conditions, we show how to construct suitable boundary conditions for the PDE such that the continuous problem is well-posed and the discrete problem is stable and spatially dual consistent. These two features result in a superconvergent functional, in the sense that the order of accuracy of the functional is provably higher than that of the solution. Jens Berg and Jan Nordström

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superconvergent functional output for time-dependent problems using finite differences on summation-by-parts form

Finite difference operators satisfying the summation-by-parts (SBP) rules can be used to obtain high order accurate, energy stable schemes for time-dependent partial differential equations, when the boundary conditions are imposed weakly by the simultaneous approximation term (SAT). In general, an SBP-SAT discretization is accurate of order p+ 1 with an internal accuracy of 2p and a boundary ac...

متن کامل

Duality based boundary conditions and dual consistent finite difference discretizations of the Navier-Stokes and Euler equations

In this paper we derive new farfield boundary conditions for the timedependent Navier–Stokes and Euler equations in two space dimensions. The new boundary conditions are derived by simultaneously considering well-posedess of both the primal and dual problems. We moreover require that the boundary conditions for the primal and dual Navier–Stokes equations converge to well-posed boundary conditio...

متن کامل

Efficient Fully Discrete Summation-by-parts Schemes for Unsteady Flow Problems

We make an initial investigation into the numerical efficiency of a fully discrete summation-by-parts approach for unsteady flows. As a model problem for the Navier-Stokes equations we consider a two-dimensional advectiondiffusion problem with a boundary layer. The problem is discretized in space using finite difference approximations on summation-by-parts form together with weak boundary condi...

متن کامل

Stable Boundary Treatment for the Wave Equation on Second-Order Form

A stable and accurate boundary treatment is derived for the second-order wave equation. The domain is discretized using narrow-diagonal summation by parts operators and the boundary conditions are imposed using a penalty method, leading to fully explicit time integration. This discretization yields a stable and efficient scheme. The analysis is verified by numerical simulations in one-dimension...

متن کامل

Coupling Requirements for Well Posed and Stable Multi-physics Problems

Abstract. We discuss well-posedness and stability of multi-physics problems by studying a model problem. By applying the energy method, boundary and interface conditions are derived such that the continuous and semi-discrete problem are well-posed and stable. The numerical scheme is implemented using high order finite difference operators on summation-by-parts (SBP) form and weakly imposed boun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012